
A Distributed Approximation for Multi-Hop
Clustering Problem in Wireless Sensor Networks

Xudong Zhu∗, Jun Li∗, Xiaofeng Gao∗§, Fan Wu∗, Guihai Chen∗, Athanasios V. Vasilakos†

∗Shanghai Key Laboratory of Scalable Computing and Systems,
Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai, 200240, China
† Dept of Computer Science, Electrical and Space Engineering,

Lulea University of Technology, Lulea, 97187, Sweden
xudongzhu42@gmail.com, lijun2009@sjtu.edu.cn, {gao-xf, fwu, gchen}@cs.sjtu.edu.cn, vasilako@ath.forthnet.gr

Abstract—In wireless sensor networks (WSNs), there is no pre-
defined infrastructure. Nodes need to frequently flood messages to
discover routes, which badly decreases the network performance.
To overcome such drawbacks, WSNs are often grouped into
several disjointed clusters, each with a representative cluster head
(CH) in charge of the routing process. In order to further improve
the efficiency of WSNs, it is crucial to find a cluster partition
with minimum number of clusters and the distance between each
node to its corresponding CH can be bounded by a constant
number of hops. Finding such a partition is defined as minimum
d-hop cluster head set (d-MCHS) problem, which is proved to be
NP-hard. In this paper, we propose a distributed approximation
algorithm, named d2-Cluster, to address d-MCHS problem and
prove that the approximation ratio of d2-Cluster under unit disk
graph (UDG) is a constant factor λ which is related to d. To
the best of our knowledge, it is the first constant approximation
ratio for d-MDS problem in UDG.

I. INTRODUCTION

Wireless sensor networks (WSNs) is a kind of autonomous
communication systems with lots of small-sized, inexpensive
and battery-powered sensors. Since such sensors are cheap
and can be deployed in various environments, WSNs have
been widely used in many applications, such as monitoring,
disaster management, battlefield surveillance, etc. [1]–[3].

Usually the most important task for a sensor is to gather
its surrounding information and send its data to the nearest
sink. However, in WSNs, there is no fixed or predefined in-
frastructure. If a sensor wants to communicate with a specified
peer, it needs to discover the route between them by flooding
messages. This mechanism causes a lot of serious problems,
such as traffic collision, energy consumption, etc.

In order to overcome these shortcomings, an efficient ap-
proach named clustering is widely pursued by the research

§X.Gao is the corresponding author.
This work has been supported in part by the National Natural Sci-

ence Foundation of China (Grant number 61202024, 61472252, 61133006,
61422208), China 973 project (2012CB316200), the Natural Science Founda-
tion of Shanghai (Grant No.12ZR1445000), Shanghai Educational Develop-
ment Foundation (Chenguang Grant No.12CG09), Shanghai Pujiang Program
13PJ1403900, and in part by Jiangsu Future Network Research Project No.
BY2013095-1-10 and CCF-Tencent Open Fund.

community. We can partition a given WSN into several dis-
jointed clusters, each of which is a small-scale autonomous
communication system. Specially, each cluster has a leader,
called cluster head (CH). A CH is the interface for ordinary
sensors in the corresponding cluster to contact the outsides.
With clustering technique, an ordinary sensor only needs to
focus on gathering information and sending the data to its
CH, and its CH will forward the data to the sink outside.
Obviously, this mechanism can save a lot of energy and reduce
the number of collisions by avoiding many redundant message
forwardings.

In the literature, many clustering algorithms were proposed
for WSNs. In [4], Younis et al. devised a clustering algorithm
to achieve equal-sized clusters to balance the work load of each
cluster. In [5], Demirbas et al. presented a clustering algorithm,
named FLOC, to partition a WSN into non-overlapping and
approximately equal-sized clusters. Since each cluster is equal-
sized, CHs take charge for a same amount of sensors. However,
there still exists a serious problem. Some ordinary sensors
in a cluster may be too far away from the CH, which will
take a long route when transmitting data to the CH. As a
consequence, it downgrades the performance of the cluster
strategy. On contrast, Wang et al. studied the problem of
minimizing the average hop distance from any node to its
cluster head in 2D sensor networks in [6]. However, they did
not consider to control the sizes of clusters when partitioning a
WSN, which will causes load imbalance among cluster heads.

To solve the conflicts above, an effective approach is to
set a parameter d, and for each node in a cluster, the hop
distance between it to its CH is upper bounded by d. Since
every sensor in a cluster is within d hops from its CH, the
CH can manage this cluster efficiently. Besides, since sensors
are usually deployed randomly in lots of applications, this
approach can also effectively obtain approximately equal-sized
cluster. Moreover, the average size of clusters can be controlled
by setting different values of d.

In this paper, we focus on partitioning a WSN into the
minimum number of d-hop clusters. Here, a d-hop cluster
means each sensor in it is either a CH or within d hops



from the CH. Obviously, finding such a partition is to find
a minimum d-hop cluster head set (d-MCHS), because a
cluster is determined once the CH is determined. Moreover,
for simplicity, we often use a graph to model a WSN. It is
not difficult to observe that finding a d-MCHS in a WSN
is to find a minimum d-hop dominating set (d-MDS) in the
corresponding graph. In this paper, we propose a distributed
d-hop clustering algorithm (d2-Cluster), to address d-MCHS
problem. d2-Cluster is a degree-based algorithm. With local
information of neighbors within 2d hops, each sensor decides
whether it can be selected as a CH. Our contributions in this
paper are summarized as follows.
• Since WSNs are self-organized distributed system, we de-

vise an efficient distributed algorithm, named d2-Cluster,
to address d-MCHS problem. Moreover, d2-Cluster is
valid under any network model.

• As d2-Cluster is an approximation for d-MCHS problem,
we prove that the approximation ratio of d2-Cluster under
UDG model is λ, which is a constant factor given in
Section IV.

• We discuss the time complexity and message complexity
of d2-Cluster. From simulation results, we show that d2-
Cluster is almost as fast as the previous fastest distributed
algorithm.

Our paper is organized as follows. In Section II provides
some preliminaries. We describe our algorithm d2-Cluster for
d-MCHS problem in Section III. Section IV provides the
analysis of our algorithm and illustrates the simulation. Finally,
Section V concludes this paper.

II. PRELIMINARIES

To simplify our problem, we assume: (1) The networks
we discuss in this paper are homogeneous networks; (2) We
ignore collisions of signals during the procedure of message
transmitting. With these assumptions, we have the following
definitions for a given graph G = (V,E).

Definition 1 (d-IS). A subset S ⊆ V is a d-hop Independent
Set (d-IS) of G if ∀u, v ∈ I , there does not exist a path within
d hops between u and v.

Definition 2 (d-MIS). A d-IS is a d-hop Maximal Independent
Set (d-MIS) if ∀u ∈ V \I, I ∪ {u} is no longer a d-IS.

Definition 3 (d-DS). A subset D ⊆ V is a d-hop Dominating
Set (d-DS) of G if ∀u ∈ V , either u ∈ D or ∃v ∈ D such that
there exists a path within d hops between u and v.

According to Definition 2 and Definition 3, it is easy to get
the following Lemma.

Lemma 1. For any given graph G, a d-MIS is also a d-DS.

Next, we formalize our problem in this paper as follows.

Definition 4 (d-MCHS Problem). Given a WSN that is mod-
eled as a graph G = (V,E), finding a d-hop cluster head set
(d-CHS) from the WSN, namely finding a d-DS from G, with
minimum size is called d-MCHS problem.

TABLE I
VARIABLES FOR NODE u

Name Explanation
id an id which is unique for each node.

color the color of node u.
degree the number of u′s white neighbors within d

hops.
N(u) a table of node u which records the id, degree

and hops of all white nodes which are at most
2d-hop away from u.

The problem of finding a minimum dominating set (MDS)
is NP-hard even in UDG [7]. Since MDS problem is a special
case of d-MCHS problem, d-MCHS problem is also NP-hard.

III. d2-CLUSTER FOR d-MCHS PROBLEM

Since d-MCHS problem is NP-hard, we can not find an
optimal solution in polynomial time unless NP = P. With
Lemma 1, we can construct a d-DS by selecting a d-MIS
from G as an approximation for d-MCHS. To make this
approximation more efficient, the size of the d-MIS should
be as small as possible. Based on this idea, we designed
our distributed algorithm, named d2-Cluster, for d-MCHS
problem.

According to the definition of d-MIS, the hop distance
between any two nodes in a d-MIS is more than d. Moreover,
we observe that, for any d-MIS node u, if the hop distance
between u to its nearest d-MIS node is larger, it shall be better
to reduce the size of d-MIS. Hence, the restriction in [8] that
every d-MIS node is d+1 hops away from its nearest d-MIS
node is an obstacle in terms of reducing the size of d-MIS.
Removing such restriction does help reduce the size of d-MIS.

Besides, it is not difficult to observe that any d-MIS node
can be separated from its nearest d-MIS node by at most 2d+1
hops. As a consequence, it is sufficient for a node to compare
itself with nodes that are at most 2d hops away from itself, to
decide whether it should be selected as a CH. Based on this,
we propose a degree-based distributed algorithm to construct
a smaller d-MIS for a given graph.

During the process of our algorithm, each node maintains
several variables which are listed in Table I. For node u,
u.color reflects its current status. There are three different
kinds of color, which are white, black and grey. Initially,
every node is colored white. Once a node is chosen as a
CH, it changes its color to black. If a node’s color is grey,
it means there exist at least one CH within d hops from this
node. u.degree means the number of u’s white neighbors
within d hops. For N(u), each element in it is a triple
(id, degree, hops) and corresponds to a white node within 2d
hops from u, say v. Then, for this triple, id is the id number
of node v, degree is the value of v.degree and hops is the
hop distance between u and v.
d2-Cluster consists of two phases. The first phase is to

initialize the variables for each node. The second phase is to
color nodes black or grey according to their local information
stored in N(·).



Algorithm 1: Initialization

1 u.color = white, u.degree = 0, N(u) = ∅;
2 Broadcast a HELLO(u.id, 1) message;
3 After N(u) collects all its neighbors within 2d hops,
4 foreach e ∈ N(u) do
5 if e.hops ≤ d then
6 u.degree = u.degree+ 1;
7 end
8 end
9 Broadcast an NEW DEG(u.id, u.degree, 1) message;
When receiving HELLO(i, h):

10 if u.id 6= i then
11 if ∃e ∈ N(u) s.t. e.id = i then
12 if e.hops > h then
13 e.hops = h;
14 if h < 2d then
15 Broadcast HELLO(i, h+ 1);
16 end
17 end
18 else
19 Push (i, 1, h) into N(u);
20 if h < 2d then
21 Broadcast HELLO(i, h+ 1);
22 end
23 end
24 end
When receiving NEW_DEG(i, degree, h):

25 if degree 6= e.degree, where e ∈ N(u) and e.id = i then
26 e.degree = degree;
27 if h < 2d then
28 Broadcast NEW DEG(i, degree, h+ 1);
29 end
30 end

A. Initialization

In this phase, each node initializes its variables by broad-
casting messages HELLO and NEW DEG. The corresponding
specifications of these messages are as follows.

• HELLO: Each node broadcasts this kind of message to
inform its neighbors its presence. This kind of message
contains two parameters, id and hops. id means the id
number of the node from which the current HELLO
message originates from. We call that node as the original
node. hops means the hop distance between the receiving
node and the original node.

• NEW DEG: When a node’s degree changes, it broad-
casts this kind of message to inform its 2d-hop neighbors
to update their local informations. This kind of message
contains three parameters: id, degree and hops. id is the
id number of the original node of this message. hops
is the hop distance between the receiving node and the
original node. degree is the new value of the original
node’s degree.

Initially, each node broadcasts a HELLO(id, 1) message to
show its presence and each of its 1-hop neighbors forwards this
massage by broadcasting message HELLO(id, 2). Generally,
when a node receives a HELLO(i, h) message, it will forward
it by broadcasting a HELLO(i, h+ 1) if h < 2d. In this way,
after node u broadcasts HELLO(u.id, 1), every node which is
at most 2d hops away from u will know u′s presence.

When each node ascertains that its variable N(·) has
recorded all its neighbors within 2d hops, it updates its
degree by checking the information in N(·). However, all
its neighbors within 2d hops only record that its degree is
1 (Line 19). Thus, it broadcasts an NEW DEG message to
inform all its neighbors within 2d hops this change. The
detailed description is shown in Alg. 1.

B. d-MIS Construction

In this phase, d2-Cluster selectes a d-MIS by coloring some
white nodes black, and the detailed description is shown in
Alg. 2, As Alg. 2 shows, this algorithm is executed round
by round. At the beginning of each round, for any node u,
if u.color is white, it will check the degrees of its white
neighbors within 2d hops, which are stored in N(u). When
u has the lowest rank compared with any node in N(u), it
will be selected as a CH and colored black. Here, for any two
nodes u and v, u has a lower rank iff one of the following
conditions meets:
• u.degree > v.degree,
• u.degree = v.degree and u.id < v.id.
Once u is colored black, all its white neighbors within

d hops will be colored grey. These black and grey nodes
are added into a set S. Then, u spreads S up to 3d hops,
because nodes in that region may need to update their local
information, such as degree and N(·). After that, u terminates.
Besides, at the beginning of each round, if N(u) is an empty
set, u will also terminate. The time interval between two
adjacent rounds is previously set to be long enough, so that
all those updating works can be done in each round.

In the procedure of Alg. 2, it also involves two kinds
of messages, BLACK and NEW DEG. The specification of
BLACK message is similar with HELLO message.

Fig. 1 shows an example to illustrate the procedure of d2-
Cluster. In this example, d = 2. d2-Cluster selects nodes 4,
11, 17 as a 2-MIS.

IV. ALGORITHM ANALYSIS

In this section, we mainly analyze the approximation per-
formance and the complexity of d2-Cluster under UDG model.

A. Approximation Ratio Analysis

We first introduce some notations that will be used in this
subsection. For any graph G, G is a unit disk graph (UDG)
if ∀u, v ∈ V , (u, v) ∈ E iff the Euclidean distance between u
and v is at most 1. In a unit disk graph G = (V,E), for any
node u ∈ V , let Nr(u) denote the set of nodes which are at
most r hops away from u. Let diskr(u) denote the disk with
center u and radius r. Let |S| denote the cardinality of set S.



Algorithm 2: Distributed d-MIS Construction (per round)

1 if N(u) = ∅ then
2 if u.color = white then
3 u.color = black;
4 Broadcast BLACK(u.id, {u}, d+ 1);
5 end
6 Terminate;
7 end
8 if u.color = white and u has the lowest rank compared

with any node in N(u) then
9 u.color = black;

10 S = {u};
11 foreach e′ ∈ N(u) do
12 if e′.hops ≤ d then
13 Push e′.id into S;
14 end
15 end
16 Broadcast BLACK(u.id, S, 1);
17 Terminate;
18 end

When receiving BLACK(i, S, h):
19 cnt = 0, flag = 0;
20 foreach e′ ∈ N(u) do
21 if e′.id ∈ S then
22 if e′.hops ≤ d then
23 cnt = cnt+ 1;
24 end
25 Remove e′, flag = 1;
26 end
27 end
28 if h ≤ d and u.color = white then
29 if u.color = white then
30 u.color = grey;
31 end
32 end
33 else if h ≤ 2d then
34 u.degree = u.degree− cnt;
35 Broadcast NEW DEG(u.id, u.degree, 1);
36 end
37 if h < 3d and flag = 1 then
38 Broadcast BLACK(i, S, h+ 1);
39 end

When receiving NEW_DEG(i, degree, h):
40 if degree 6= e.degree, where e ∈ N(u) and e.id = i then
41 e.degree = degree;
42 if d < 2d then
43 Broadcast NEW DEG(i, degree, h+ 1);
44 end
45 end

First, we only discuss one cluster in G = (V,E) and denote
it by Cluster(o), where o is the CH of this cluster. Then,
every node in Cluster(o) is within d hops away from o. Next,

we analyze how many d-hop independent nodes there are in
Cluster(o). Denote that number as α. In order to prove an
upper bound for α, we introduce the following Lemma.

Lemma 2. (Zassenhaus-Groemer-Oler inequality) [9]. The
number of non-overlapping disks with radius 0.5 whose cen-
ters can be packed into a compact convex region C is bounded
by

2√
3
A(C) +

1

2
P (C) + 1,

where A(C) and P (C) are the area and perimeter of C,
respectively.

From Lemma 2, we can immediately conclude the following
corollary.

Corollary 1. diskr(o) can contain at most
2√
3
πr2 + πr+ 1

independent nodes.

It is easy to find that all those d-hop independent nodes in
Cluster(o) are located in diskd(o). Additionally, the Euclidean
distance between any two d-hop independent nodes is greater
than 1. According to Corollary 1, we have

α ≤ 2√
3
πd2 + πd+ 1. (1)

However, this is a rough estimation for α. Inspired by [11],
we can improve it further.

When d = 1, it is easy to figure out that α ≤ 5 because a
unit disk can contains at most 5 independent nodes. When
d = 2, α ≤ 21 by inequality (1). Next, we only discuss
the situations where d ≥ 3. Assume I is the set of d-hop
independent nodes in Cluster(o). We partition I into two parts
as follows:

A = Ndd/2e(o) ∩ I = {u1, u2, . . . , ut}

B = Nd(o)\Ndd/2e(o) ∩ I = {v1, v2, . . . , vs}

For the first part, we are to show that t ≤ 5.
Suppose t > 5. Since N1(o) contains at most 5 independent

nodes, we could always find two nodes ui and uj so that their
last nodes on their shortest paths to o are not independent.
Thus, there exists a path with length of at most 2(dd/2e −
1) + 1 ≤ d between ui and uj . Consequently, ui and uj are
not d-hop independent, which yields a contradiction.

For the second part, denote the shortest path from vi to o as
Pi, where 1 ≤ i ≤ s. Let Si = Nb(d−1)/2c(vi)∩Pi. Consider
two nodes vi, vj ∈ B. For any two nodes w ∈ Si, z ∈ Sj , it is
clear that they are not adjacent. Otherwise, there exists a path
vi w→z vj with length of at most 2b(d− 1)/2c+ 1 ≤ d,
which yields a contradiction. Since Pi is the shortest path from
vi to o, any node in Pi is not adjacent to its second succes-

sor and predecessor. Thus, Si contains at least d1
2
bd− 1

2
ce

disjointed nodes. Assume Ai ⊆ Si and any two nodes in

Ai are not adjacent. Then, |Ai| ≥ d
1

2
bd− 1

2
ce. Besides,



(a). Initialization (b). After the first round of Alg. 2 (c). After the second round of Alg. 2

Fig. 1. An example to illustrate d2-Cluster. (a) shows the input graph of a 2-MCHS problem with 18 nodes. At the beginning of the first round in Alg. 2,
each node has initialized its local variables. By checking its degree with its white neighbors within 4 hops, nodes 4 and 11 are selected as cluster heads.
Then, nodes 4 and 11 are colored black and their neighbors within 2 hops are colored grey. The state after the first round is shown in (b). At the beginning
of the second round, there are only three white nodes. By checking, node 17 is selected as CH and colored black. Its white neighbors (nodes 16, 18) are
colored grey. The state of all nodes is shown in (c). Since all nodes are colored black or grey, Alg. 2 teminates.

(a). Rounds for d2-Cluster and algorithm in [10] (b). Rounds of d2-Cluster for larger d (c). The output size of d-MIS.

Fig. 2. Comparison between d2-Cluster and Alg. in [10] in terms of time complexity

any two nodes in Ai ∪ Aj are also not adjacent. Combining
Inequality (1), we have

s ≤ α

d1
2
bd− 1

2
ce
≤

2√
3
πd2 + πd+ 1

d1
2
bd− 1

2
ce

.

Based on the analysis above, we can conclude an improved
upper bound for α. We denote it by λ and

λ =


5, if d = 1,
21, if d = 2,

5 +

2√
3
πd2 + πd+ 1

d 12b
d−1
2 ce

, if d ≥ 3.

Assume that the size of d-MCHS is opt. Then, there are no
more than λopt d-hop independent nodes in graph G. Aslo d2-
Cluster cannot select more than λopt black nodes. Therefore,
we have the following theorem.

Theorem 1. d2-Cluster has an approximation ratio of λ under
UDG model.

B. Complexity Discussion for d2-Cluster

Since d2-Cluster is a synchronous distributed algorithm, we
consider two typical kinds of complexity: message complexity
and time complexity. It is easy to see that the message
complexity of d2-Cluster is O(n2). As for time complexity,
we will first give a loose upper bound for general graphs.

Then, we will compare d2-Cluster under UDG model with
the previous best algorithm [10] in terms of time complexity.

Typically, for a distributed algorithm, we measure its time
complexity by the number of rounds each node runs during
its executing process. As for Alg. 1, it can be finished in only
one round. Hence, the time complexity of Alg. 1 is O(1). As
for Alg. 2, obviously the whole algorithm terminates when
all nodes are colored black or grey. In each round, there is
at least one white node that will be colored black, and all its
white neighbors that are at most d hops away from it will
be colored grey. In the worst case, the number of rounds in
Alg. 2 is O(n). Therefore, the time complexity of d2-Cluster
for general graphs is O(n).

In [10], the authors proposed a distributed algorithm for
MIS problem in bounded-independence graphs. As far as we
know, their algorithm is the fastest distributed algorithm. With
time complexity O(log∗ n). To compare d2-Cluster with that
fastest algorithm, we make some related simulations in UDG
model and the results are shown in Fig. 2. Since [10] only
discussed finding an MIS, we compare its results when d = 1.

In our simulations here, all nodes are randomly located on
a two-dimensional virtual region. The range of the region is
20 × 20. For each node, its sensing range is 1. The number
of nodes are from 50 to 1000. For each data in these figures,
we run the corresponding simulations 50 times and take their
average value as the final data.

From Fig. 2(a), we can see that Alg. in [10] is faster
than d2-Cluster. However, the difference between them is not



(a). The size of d-MIS vs. the size of networks (b). The average size of clusters (c). The overlaps between clusters

Fig. 3. Simulation results for evaluating the performance of d2-Cluster

quite large. In other words, the time complexities for both
algorithms are of the same order of magnitude. In this sense,
d2-Cluster is almost as fast as the algorithm in [10]. From
Fig. 2(b), for d2-Cluster, the number of rounds decreases with
large d when the number of nodes is not large enough. These
results are reasonable, because each dominator can cover more
nodes when d increases. When the number of nodes keeps on
increasing, the numbers of rounds for d = 2, 4, 6 are almost
the same.

The curve even becomes more flat with larger size of
networks. According to Fig. 2(c), we can see that d2-Cluster
can select a smaller-sized MIS compared with the algorithm
in [10]. In this sense, d2-Cluster is more efficient than the
algorithm in [10].

C. More Numerical Experiments

We evaluate the performance of d2-Cluster for partitioning
wireless sensor networks by simulations. In our simulations,
sensor nodes are randomly generated in a 2D virtual space.
The number of sensors varies from 50 to 1000 at intervals
of 50. All the experiments are performed 100 times and the
average results are taken. First, we studied the size of d-
MIS obtained by d2-Cluster. In addition, we also studied the
average size of clusters and the overlapping ratio between
clusters. The simulation results are as follows.

Fig. 3(a) shows the number of d-MIS obtained by d2-
Cluster, where d = 2, 3, 4. From this figure, we can see that
the size of d-MIS reduces with increasing d.

From Fig. 3(b), we can see that the average size of clusters
tends to be stable when the size of networks increases. More-
over, the stable value of the average size is nearly proportional
to d2. In this sense, we can effectively control the average size
of clusters by changing the value of d.

As for the overlapping ratio, we consider the nodes which
are located in at least two clusters. We call those nodes as
overlapping nodes. Obviously, these overlapping nodes can be
of great use in lots of applications, such as routing between
clusters and recovery from cluster head failure. From Fig. 3(c),
we can see that the overlapping nodes are about 27%, which
is appropriate for those applications.

From these simulation results, we can conclude that d2-
Cluster is an effective clustering algorithm for WSNs partition.

V. CONCLUSION

In this paper, we studied the multi-hop clustering problem
for a given wireless sensor network, which is defined as d-
MCHS problem. We presented a distributed, approximation
algorithm, named d2-Cluster, to address d-MCHS problem. d2-
Cluster is a degree-based algorithm. Each node uses the local
information of its neighbors within 2d hops to decide whether
it can be selected as a cluster head (CH). We discussed its time
complexity and message complexity. For time complexity, we
compared d2-Cluster with the previous fastest algorithm under
UDG model and we showed that d2-Cluster is almost as fast as
the previous fastest algorithm. Moreover, we also proved the
performance ratio of d2-Cluster under UDG model is λ, where
λ is a constant parameter related to d. As far as we know,
this is the first constant result for d-MDS problem in UDG.
Finally, the simulation results also showed the high efficiency
of d2-Cluster.

REFERENCES

[1] S. Basagni, L. Boloni, P. Gjanci, C. Petrioli, C. A. Phillips, and
D. Turgut, “Maximizing the value of sensed information in underwater
wireless sensor networks via an autonomous underwater vehicle,” in
IEEE INFOCOM. IEEE, 2014, pp. 988–996.

[2] I. Benkhelifa, N. Nouali-Taboudjemat, and S. Moussaoui, “Disaster man-
agement projects using wireless sensor networks: An overview,” in Ad-
vanced Information Networking and Applications Workshops (WAINA).
IEEE, 2014, pp. 605–610.

[3] B. Pannetier, J. Dezert, and G. Sella, “Multiple target tracking with
wireless sensor network for ground battlefield surveillance,” in IEEE
FUSION. IEEE, 2014, pp. 1–8.

[4] O. Younis and S. Fahmy, “Heed: a hybrid, energy-efficient, distributed
clustering approach for ad hoc sensor networks,” IEEE Transactions on
Mobile Computing, vol. 3, no. 4, pp. 366–379, 2004.

[5] M. Demirbas, A. Arora, and V. Mittal, “Floc: A fast local clustering
service for wireless sensor networks,” in DIWANS/DSN, 2004.

[6] W. Wang, D. Kim, N. Sohaee, C. Ma, and W. Wu, “A PTAS for
minimum d-hop underwater sink placement problem in 2d underwater
sensor networks,” Discrete Mathematics, Algorithms and Applications,
vol. 1, no. 2, pp. 283–289, 2009.

[7] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,”
Annals of Discrete Mathematics, vol. 48, pp. 165–177, 1991.

[8] P.-J. Wan, K. M. Alzoubi, and O. Frieder, “Distributed construction
of connected dominating set in wireless ad hoc networks,” in IEEE
INFOCOM 2002, vol. 3, 2002.

[9] N. Oler, “An inequality in the geometry of numbers,” Acta Mathematica,
vol. 105, no. 1, pp. 19–48, 1961.

[10] J. Schneider and R. Wattenhofer, “An optimal maximal independent set
algorithm for bounded-independence graphs,” Distributed Computing,
vol. 22, no. 5-6, pp. 349–361, 2010.

[11] Z. Zhang, Q. Liu, and D. Li, “Two algorithms for connected r-hop k-
dominating set,” Discrete Mathematics, Algorithms and Applications,
vol. 1, no. 04, pp. 485–498, 2009.


